skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kokate, Prajakta P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Certain mycophagous Drosophila species are the only known eukaryotes that can tolerate some highly potent mycotoxins. This association between mycophagy and mycotoxin tolerance is well established because Drosophila species that switch hosts from mushrooms to other food sources lose their mycotoxin tolerance trait without any evolutionary lag. These findings suggest that mycotoxin tolerance may be a costly trait to maintain. In this study, we attempted to identify whether mycotoxin tolerance has a fitness cost. Larval competitive ability is a vital fitness trait, especially in holometabolous insects, where the larvae cannot move to a new host. Furthermore, larval competitive ability is known to be associated with many critical life-history traits. Here we studied whether mycotoxin tolerance adversely affects larval competitive ability on isofemale lines from 2 distinct locations. We observed that the extent of mycotoxin tolerance affected larval competitive ability, but only in isofemale lines from one location. Additionally, we observed that the high mycotoxin-tolerant isofemale lines from the same location showed poor survival to eclosion. This study shows that mycotoxin tolerance is associated with fitness costs and provides preliminary evidence of an association between local adaptation and mycotoxin tolerance. 
    more » « less
  2. null (Ed.)
    Abstract Codon usage bias, where certain codons are used more frequently than their synonymous counterparts, is an interesting phenomenon influenced by three evolutionary forces: mutation, selection, and genetic drift. To better understand how these evolutionary forces affect codon usage bias, an extensive study to detect how codon usage patterns change across species is required. This study investigated 668 single-copy orthologous genes independently in 29 Drosophila species to determine how the codon usage patterns change with phylogenetic distance. We found a strong correlation between phylogenetic distance and codon usage bias and observed striking differences in codon preferences between the two subgenera Drosophila and Sophophora. As compared to the subgenus Sophophora, species of the subgenus Drosophila showed reduced codon usage bias and a reduced preference specifically for codons ending with C, except for codons with G in the second position. We found that codon usage patterns in all species were influenced by the nucleotides in the codon’s 2nd and 3rd positions rather than the biochemical properties of the amino acids encoded. We detected a concordance between preferred codons and preferred dinucleotides (at positions 2 and 3 of codons). Furthermore, we observed an association between speciation, codon preferences, and dinucleotide preferences. Our study provides the foundation to understand how selection acts on dinucleotides to influence codon usage bias. 
    more » « less